Communications in Transportation Research 4 (2024) 100150

®

Communications in
Transportation Research

Contents lists available at ScienceDirect

Communications in Transportation Research

LSEVIER

journal homepage: www.journals.elsevier.com/communications-in-transportation-research

Full Length Article

Towards explainable traffic flow prediction with large language models R

Check for
updates

Xusen Guo * 1‘.,' 'Qiming Zhang ! Junyue Jiang °, Mingxing Peng?, Meixin Zhu®“", Hao
Frank Yang ™
& Intelligent Transportation Thrust, System Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511400, China

b Department of Civil and System Engineering, Johns Hopkins University, Baltimore, 21218, USA
¢ Guangdong Provincial Key Lab of Integrated Communication, Sensing and Computation for Ubiquitous Internet of Things, Guangzhou, 511400, China

ARTICLE INFO ABSTRACT

Keywords:

Traffic flow prediction
Large language models
Spatial-temporal prediction
Explainability

Traffic forecasting is crucial for intelligent transportation systems. It has experienced significant advancements
thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning
architectures require intricate model designs and lack an intuitive understanding of the mapping from input
data to predicted results. Achieving both accuracy and explainability in traffic prediction models remains a
challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these
challenges, we propose a traffic flow prediction model based on large language models (LLMs) to generate
explainable traffic predictions, named xTP-LLM. By transferring multi-modal traffic data into natural language
descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data.
The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow
data. Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing
an intuitive and reliable explanation for predictions. This study contributes to advancing explainable traffic
prediction models and lays a foundation for future exploration of LLM applications in transportation.

1. Introduction Deep learning-based traffic analysis (Wang et al., 2022) has been well

researched, covering human mobility research (Jin et al., 2018; Zhang

Traffic network prediction is a critical component of transportation
management systems, aiming to forecast future traffic conditions such as
congestion, traffic volume, and travel time. It plays a vital role in various
applications, including route planning, traffic management, and intelli-
gent transportation systems (ITS) (Dimitrakopoulos and Demestichas,
2010). Accurate predictions are crucial for providing valuable insights to
stakeholders in traffic systems, aiding in informed decision-making.
However, achieving reliability and precision in predictions is chal-
lenging due to the inherent nonlinear dynamics of traffic, spatial and
temporal variability, and dynamic nature influenced by factors like ac-
cidents, weather conditions, and other events, necessitating models
capable of capturing complex dependencies and rapid changes. As
large-scale traffic data becomes more available and deep learning tech-
niques advance, data-driven methods are increasingly favored for
modeling complex traffic flow systems.

et al., 2017), traffic management (Du et al., 2020; Ranjan et al., 2020),
and accident analysis (Yannis et al., 2017). Typically, these issues are
treated as spatio-temporal deep learning problems. Deep learning
methods consistently learn hierarchical feature representations from
spatial-temporal data, understand historical trends (Fan et al., 2018;
Yang et al., 2016), and employ graphs to illustrate the spatial relation-
ships between locations (Gao et al., 2018; Marblestone et al., 2016). The
spatio-temporal-graph learning paradigm is the primary methodology for
learning representations and capturing potential trends and relationships
from traffic data.

Despite the comprehensive model architectures, this domain format
still faces challenges. First, deep learning methods require specific
network structure designs (Asanjan et al., 2018; Li et al., 2017), to
consider the multi-modal dynamic nature and spatio-temporal
complexity of traffic data. Although these designs can help the model
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improve the accuracy of predictions, they are generally artificially craf-
ted, and abstract representations further obscure generalization ability.
Additionally, some traffic forecasting studies (Chen et al., 2022; Dai and
Wang, 2020; Zhou et al., 2019) related to the reliability and robustness of
models prioritize the degree of fit to actual values. They consider a va-
riety of dynamic factors affecting traffic flow to improve the reliability of
traffic flow predictions. However, these methodologies encounter diffi-
culties in providing credentials for prediction and taking accountability
for outcomes in real-world traffic prediction tasks that lack labeled data.

Recently, with the popularity of foundation models (Chang, 2023;
Touvron et al., 2023), large language models (LLMs) provide more
intuitive explainable trials in spatial-temporal domain tasks, benefiting
from textual paradigms. Spatial-temporal learning tasks can be refined
into language format for exploring the potential of LLMs in various
application fields, including forecasting (Jin et al., 2023; Shi et al., 2023),
data imputation (Chen et al., 2023), and anomaly detection (Wan et al.,
2024), as depicted in Fig. 1. Considering multi-modalities in urban big
data, the LLM framework transfers original data into natural language
description and is capable of capturing latent relationships between in-
puts from complicated contexts. Also, LLMs can generate explanations of
the reasoning process, which provides available supplements for pre-
diction and decision-making. However, though LLMs have expertise in
language-based tasks, how to formulate specific spatial-temporal tasks
into LLM frameworks for accurate prediction remains challenging.

In response to the challenges mentioned, we present XTP-LLM, a novel
traffic flow prediction framework utilizing LLMs. This framework effec-
tively predicts future traffic flow using multi-modal data while providing
interpretable explanations. By converting traffic data and external fac-
tors—such as points of interest, weather conditions, dates, and holiday-
s—into a structured prompt, xTP-LLM captures domain-specific
information more effectively. Our experiments reveal that xTP-LLM not
only outperforms state-of-the-art deep learning models in accuracy but
also exhibits robust generalization across various scenarios. The main
contributions of this work are as follows.

e We design a structured textual prompt that incorporates multi-modal
traffic flow information, facilitating LLMs to capture traffic patterns
better. Additionally, we reorganized the multi-modal traffic flow data
in California to create a comprehensive text-based dataset, CATraffic,
for future exploration in traffic prediction with LLMs.

e We propose xTP-LLM, a traffic flow prediction framework based on
LLMs. This framework exhibits competitive accuracy against state-of-
the-art deep learning models and demonstrates effective
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generalization abilities across different traffic flow prediction sce-
narios without additional training.

e xTP-LLM can provide insightful explanations for its prediction results,
offering greater interpretability than traditional deep learning ap-
proaches, which facilitates rational decision-making in traffic man-
agement and planning.

For the rest parts of this paper, the related works are involved in
Section 2, and details about methodology are illustrated in Section 3.
Comparison results, ablation, explanation, and what-if studies are
included in experimental results and analysis, as Section 4. Section 5
summarizes this paper and gives insights for future exploration of LLM
applications in transportation.

2. Related works

In this section, we will first explore advancements in spatial-temporal
prediction, emphasizing the integration of deep learning methodologies.
Subsequently, we will delve into the importance of reliable prediction,
discussing methods for enhancing explainability in spatial-temporal
learning. Finally, we will highlight the transformative role of LLMs
across diverse domains, elucidating their pre-training and fine-tuning
practices for domain-specific tasks.

2.1. Spatial-temporal prediction

Recently, the field of spatial-temporal learning has witnessed signif-
icant advancements, especially in the traffic, environment, and society
field, due to the emergence of deep learning methodologies. These ap-
proaches have enabled the modeling of latent relationships among
various features of urban data in diverse formats. These architectural
designs are meticulously crafted to comprehend and represent the
intricate interplay between spatial and temporal dimensions within
datasets. Convolutional neural networks (CNNs) (Liang et al., 2018;
Zhang et al., 2017), quite renowned for their efficacy in computer vision,
are employed to discern the spatial relations among grid regions, by
filtering the input data. Moreover, recurrent neural networks (RNNs)
(Hopfield, 1982) are usually leveraged to adeptly capture temporal de-
pendencies, through the maintenance of a memory state, facilitating the
reusing of information over time. Notably, more spatial-temporal
learning frameworks introduce graph neural networks (GNNs) (Guo
et al., 2019; Wu et al., 2019; Yu et al., 2018), advanced in the repre-
sentation of complex spatial relationships inherent in data structured as
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Fig. 1. Spatial-temporal learning formats for deep learning models and LLMs: Compared with well-developed deep learning models, LLMs for spatial-temporal
learning advance in adapting domain knowledge with urban multi-modal data and generate reasonable explanations.
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graphs, wherein nodes correspond to spatial locations and edges encap-
sulate the connections between them. Additionally, the adaptation of
transformers (Vaswani et al., 2017), originally proposed for natural
language processing, has proven effective in long-sequence modeling to
capture comprehensive information. Various transformer blocks (Cai
etal., 2020; Yu et al., 2020) have been tailored for different dependencies
among spatial-temporal features, enabling the modeling of intricate re-
lationships. A notable trend in this domain is the combination of different
model architectures, leveraging various modules for spatial or temporal
features (Jiang et al., 2023; Xu et al., 2020). This amalgamation gradually
becomes the prevailing paradigm, showcasing promising performance in
prediction tasks. However, it is worth noting that while these methods
perform excellent in prediction accuracy, they often fall short in terms of
explainability and generalization.

2.2. Explainable prediction

The explainability of spatial-temporal learning is also worthy of
consideration for reliable prediction, which provides abundant views
beyond prediction accuracy. Most recent works studied which features
mostly affect decisions generated by models (Barredo-Arrieta et al.,
2019) focus on the dependency on latent variables of road forecasting
based on black-box machine learning methods, including RNNs and
Random Forests. The spatial-temporal causal graph inference, as pre-
sented in Zhang et al. (2022), offers an approximation of the Granger
causality test, thereby enhancing the accessibility of forecasting. Coun-
terfactual explanations for time series (Ates et al., 2021; Yan and Wang,
2023) are also highly regarded, as they concentrate on generating
alternative prediction outcomes by selecting time series data points from
the training set and substituting them into the sample under analysis.
This method allows for the illustration of results by examining a limited
number of variables. Besides these methods focusing on model trans-
parency, LLMs offer an alternative approach to generate convincible
explanations along with prediction results with greater intuitiveness
(Gruver et al., 2024; Huang et al., 2023; Peng et al., 2024). As a bridge
between complex systems and humans, LLMs have the potential to
convert input-output mappings into natural, easy-to-understand narra-
tives, helping humans make more informed and reliable decisions
(Cambria et al., 2024; Zytek et al., 2024).

2.3. Large language models

Large language models (LLMs) have achieved remarkable success
across a wide range of tasks and fields, including natural language pro-
cessing (Ray, 2023), vision-language tasks (Liu et al., 2023), and various
other interdisciplinary domains (Thirunavukarasu et al., 2023; Wu et al.,
2023). Originally designed as pre-trained language foundation models
for addressing various natural language tasks, LLMs have exhibited the
capacity to acquire intricate semantic and knowledge representations
from extensive text corpora over time. This newfound ability has been a
profound source of inspiration within the community for addressing a
variety of tasks. The success of models like GPT-4 (Chang, 2023) in
natural language understanding and generation tasks has spurred interest
in exploring their potential for handling complex, multi-modal datasets
beyond traditional linguistic domains. They can extract valuable infor-
mation and relationships from complex textual contexts, thereby
enhancing the learning of city data. With the popularity of
decoder-architecture LLMs, domain tasks are normally formulated into
the next token generation, which provides a unified formulation to learn
the map from the input to the output. To acquire large models for specific
fields, the practices of pre-training and fine-tuning have become widely
accepted in the model training process. Pre-training a foundation model
from scratch necessitates substantial computing resources and
domain-specific datasets, resulting in its superior performance within
professional domains compared to baseline models. On the other hand,
fine-tuning based on foundation models offers a more accessible
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approach, involving adjustments to only a few parameters (Hu et al.,
2021). This method preserves most general knowledge while targeting
expertise in domain-specific tasks. In some cases, researchers freeze all
parameters of LLMs and focus solely on training the extended encoders
and decoders (Jin et al., 2023; Zhu et al., 2023). This strategy aims to
extend the learning capabilities of LLMs to domain-specific tasks while
leveraging their existing knowledge base.

3. Methodology

This study presents a novel approach utilizing LLMs for traffic flow
prediction. Our objective is to develop a predictive model that not only
forecasts traffic flow patterns but also provides explanations for the
predicted trends. In the following sections, we will provide a compre-
hensive overview of our approach. Firstly, we will describe the problem
formulation and the predictive framework. Next, we will discuss the
construction of prompts, which is crucial for fine-tuning LLMs. Finally,
we will talk about the fine-tuning technique and how to generate the
explanation corresponding to the predicted result.

3.1. Problem description

The traffic flow prediction problem as a part of time-series prediction
problems, can be formulated as forecasting future values according to the
historical data. In our framework, the goal is to predict future-step values
and generate explanations based on historical values and external factors.
We can represent this using Eq. (1):

XT:T+H~, H[ = PS(XTfol:TfhE[) (1)

where the function Py is the predictive model, that learns the mapping
relationship between input and output. X7_g_1.7—1 and Xr.7, gy represent
continuous historical values and future predicted values with H steps. E;
is the external factor for data sample i, which includes date, holiday in-
formation, meteorological data and Pol data, etc. [; is the explanation
corresponding to the predicted output Xr., 5. In this work, we treat the
language model (LLM) as the predictive model Py, and utilize the lan-
guage tokenizer to transform the input and output data as a sequence of
tokens, thus reframing the task of traffic flow prediction as a language
modeling problem. Specifically, given the tokenized input sequence
St_g-1.7-1 and tokenized external factors SE; for data sample i, the
tokenized output sequence St.7. g is reconstructed autoregressively:

§T+i = argmaxPy (STH‘ST:TH—hST—H—I:T—I , SEi) (2)

ST+i

where sT.; represents the i-th predicted next token in output sequence.
Similarly, the explanation can also be generated following the output
sequence in this way. By incorporating the next token prediction into the
framework, we enhance the language model's ability to generate
coherent and contextually relevant explanations alongside traffic flow
predictions.

3.2. Prompt construction

This section demonstrates how to textualize multi-modal traffic data
and construct instructions to inspire the reasoning and predicting abili-
ties of LLMs. The instruction part of Fig. 2 showcases a meticulously
crafted prompt template, designed to capture essential details consis-
tently and comprehensively, including system prompts, spatial-temporal
information, and external factors. Empirically, this structured format is
tailored to convey diverse data modalities, boost the model's compre-
hension, and refine predictive accuracy.

e System prompts. To enhance the integration of LLMs into traffic
prediction tasks, system prompts are structured with clear task de-
scriptions and domain-specific knowledge, as shown in Fig. 3. Task
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Fig. 2. Framework of xTP-LLM: Multi-modal traffic flow data is converted into text-based prompts, leveraging task settings and domain knowledge to enable a LLM to
discern latent relationships across diverse inputs and traffic patterns. Through fine-tuning, the LLM gains the ability to predict future values and furnish pertinent
explanations. This refined model adeptly captures regional, traffic patterns and dependencies on input factors, facilitating generalized predictions even in unseen

datasets, thus enhancing its predictive capabilities.

settings explicitly outline the role of LLMs and leverage their pre-
existing understanding of the traffic domain. Domain knowledge
about traffic flow is embedded within the text description, incorpo-
rating few-shot examples to prompt LLMs to consider spatial factors,
temporal fluctuation, and their interdependence. Spatial-specific
traffic pattern cases are presented to assist models in establishing
connections between geographical characteristics and traffic flow
variations. For instance, residential areas may experience heightened
traffic volume and increased travel activities during morning and
evening rush hours.
Chain of thoughts. Chain of thought (CoT) (Wei et al., 2022)
prompts have been proven to improve LLMs' reasoning capabilities in
intricate problems, which promote models to think from shallow to
deep. Inspired by zero-shot CoT (Kojima et al, 2022),
spatial-temporal CoT prompts in Fig. 4 are strategically crafted to
enhance the LLMs' inference abilities. Initially, prompt questions
guide LLMs to contemplate the spatial characteristics and potential
traffic dynamics within a given area. Subsequently, LLMs assess
whether the predicted time slot corresponds to special periods such as
rush hours, weekdays, weekends, or holidays. After capturing
spatial-temporal information, LLMs are directed to explore the pro-
found connection between spatial data and the fluctuation of histor-
ical traffic flow, facilitating more precise predictions.
Spatial attributes. Multi-modal information prompts serve as the
cornerstone of our approach. In this context, spatial attributes are
derived from nearby points of interest (Pols). We preprocess Pol
category data within different proximity ranges (1, 3, and 5 km),
aligning with the locations of traffic volume sensors. To reduce
redundant input and avoid the LLM's over-reliance on Pol informa-
tion, we summarized the Pol distribution into descriptions of regional
attributes, such as transportation hubs, commercial zones, and resi-
dential areas, effectively representing the key characteristics of each
geographical area. This approach facilitates the effective representa-
tion of spatial factors, enabling the model to grasp the intricate
interplay between various factors impacting traffic flow dynamics.
Also, regional data comprises details such as the city, and road loca-
tion. Our xTP-LLM framework leverages this multifaceted informa-
tion to recognize and integrate spatial and temporal patterns across
diverse regions and periods.
o Historical time series. Historical series are transcribed into textual
descriptions with direct numerical representation. Data from the past

12 h are illustrated for each hour's time slot, enabling LLMs to accu-
rately perceive the temporal change of traffic flow, compared with
encoding temporal features. This approach empowers LLMs to
generate insights, understanding, and explanations for emerging
trends and patterns.

External factors. External factors influencing traffic flow, such as
dates, holidays, weather conditions, temperature, and vehicle visi-
bility, are systematically considered. These diverse data points are
uniformly transformed into textual information for comprehensive
analysis.

A detailed prompt design can be found in Table Al in Appendix A.
Overall, this integration ensures a holistic understanding of the sur-
rounding environment, historical trends, and external influences,
enriching the model's contextual reasoning and enhancing its predictive
capabilities.

3.3. Supervised fine-tuning

Supervised fine-tuning is a key technique for adapting LLMs to spe-
cific tasks (Ding et al., 2023; Ziegler et al., 2019). Initially, LLMs are
trained on extensive, diverse datasets to develop broad linguistic
knowledge. However, to excel in particular applications or domains,
these models need additional training on task-specific data. In supervised
fine-tuning, the pre-trained model is further trained on a dataset with
labeled examples that are directly relevant to the target task. For
instance, if the task is traffic prediction, the fine-tuning dataset would
include historical traffic data paired with accurate forecasts. This process
involves adjusting the model's parameters to improve its performance by
optimizing a loss function that measures the discrepancy between the
model's predictions and the true outputs. Fine-tuning enables the model
to leverage its general knowledge while becoming more proficient in the
specific domain, enhancing both accuracy and relevance.

During the fine-tuning phase, the traffic forecasting task is framed as a
next-token generation task. The model predictions future traffic volumes
autoregressively by optimizing the following objective function for the
entire annotated dataset D:

LT(D) = - ZIOg P(Y|Y1 13 X1) 3)

J=1
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where Y; is the ground truth of the next token, X;., is the sequence of
input historical tokens, and Y1, 1 is the previously generated tokens.
Through this process, the model learns to make more accurate pre-
dictions tailored to the specific task or domain it is being fine-tuned for.
This approach maximizes the learning potential of the LLM, enabling it to
develop specialized proficiency in the target domain.

Our xTP-LLM model is built upon the renowned open-source large
language model, Llama2-7B-chat (Touvron et al., 2023), and is fine-tuned
with LoRA technique (Hu et al., 2021). LoRA is a technique designed to
efficiently adapt large pre-trained models to new tasks by introducing
low-rank updates to the model's parameters. In LoRA, the adapted
model's weight matrix W is expressed as W = Wy + aAW, where Wy
represents the original pre-trained weights, « is the scaling factor that
determines the magnitude of the low-rank update, and AW is the update
applied during fine-tuning. Instead of updating the entire matrix AW
directly, LoRA approximates it using the product of two
lower-dimensional matrices: AW = B x A. Here, B € R®" and A € R,
with r being the rank of the approximation, chosen to be much smaller
than the dimensions of Wy (i.e., r < min(d, k)). This low-rank factor-
ization significantly reduces the number of parameters involved in the
update fromd x ktor x (d + k), leading to substantial computational and
memory savings.

3.4. Explanation generation

The chat models in Llama2 are tailored to excel in understanding and
generating text in conversational contexts. Therefore, by incorporating
explanation requirements into the prompts, our model can not only
generate prediction results but also provide explanations simultaneously.
Initially, we add instructions for generating explanatory text directly
within the input prompt. Although xTP-LLM was able to produce such
explanations, they often lacked coherence with the prediction results. We
attribute this issue to the model's insufficient alignment between expla-
nations and predictions, as only the predictions are used in loss calcu-
lations during the fine-tuning phase. We addressed this misalignment by
employing few-shot learning (Dai and Wang, 2020; Radford et al., 2019).
By including a few carefully selected examples in the input
prompt—examples that illustrate how the explanation should align with
the traffic flow prediction—the LLM is able to learn this alignment
dynamically during inference. To conduct few-shot learning in our
context, we follow the steps below.

e Create few-shot examples: We selected 2-3 examples where the
traffic flow prediction and the corresponding explanations were
correctly aligned. These examples are generated through ChatGPT
with ground truth predictions in input.

¢ Incorporate into the input prompt: These few-shot examples were
then included directly in the input before the instruction fine-tuning
prompt.

e Model inference: The LLM uses these examples as a guide during
inference, enabling it to generate explanations that align well with the
predicted sequences.

By structuring the few-shot examples in this way, we effectively
leveraged the LLM's in-context learning capability to resolve the
misalignment issue without requiring extensive new data or additional
fine-tuning. This approach not only improved the coherence of the output
explanations but also demonstrated the adaptability of LLMs in handling
complex tasks with minimal examples.

4. Experimental settings and results

In this section, we will start by introducing our experimental setups,
which include the dataset we used, the evaluation methods we employed,
the baseline models we compared against, and the parameter settings we
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used in the fine-tuning process. Subsequently, we will present the main
results of our experiments, which involve comparing xTP-LLM with the
baseline models, discussing how the performance of our model varied in
the spatio-temporal domain, conducting ablation studies, and exploring
the generalization capabilities of our model. Finally, we will discuss the
explanations generated by xTP-LLM in corresponding to the traffic flow
predictions. This discussion will elucidate how the robust reasoning
capability inherent in LLMs enhances traffic forecasting tasks.

4.1. Dataset description

Our experiments were conducted based on our proposed multi-modal
traffic prediction dataset, named CATraffic. This dataset consists of traffic
volume data from various regions in California, as well as meteorological
information, nearby point of interests (Pols) data, and holiday informa-
tion. The traffic volume data is sourced from the LargeST dataset (Liu
et al., 2024), which comprises five years (2017-2021) of traffic flow data
in California, encompassing 8600 traffic sensors sampled at a 15-min
interval. We constructed CATraffic by selecting a subset of the LargeST
dataset, focusing on 1,000 sensors from the greater los angeles (GLA) and
greater bay area (GBA). Our dataset spans two years from January 1,
2018 to December 30, 2019, with data sampled hourly. The choice of a
1-h granularity represents a strategic compromise that balances the need
for temporal resolution with the computational constraints as well as the
input context length constraints of LLMs. Our Pols data is obtained
through OpenStreetMap? with the help of the Overpass Turbo APIL> For
the meteorological data, we collected information from the National
Oceanic and Atmospheric Administration (NOAA™). These include fac-
tors such as reported weather events, temperature, and visibility, which
are considered as they have direct impacts on traffic patterns.

During the sensor selection process, for a diverse representation of
traffic patterns, we clustered all 8,600 sensors into 1,000 categories
based on their nearby Pols features. These Pols features are formalized as
Fpat = (5550 fE) (P oo S (P f e f). (3 f o f5)), where £,
f*,f", and £ represent the Pols features in the four directions (East, West,
North, and South), respectively. We selected the top-n Pol categories,
normalized their counts in a range of 5 km, and expressed them as f; for i-
th category. In our experiments, we set n to 20 for convenience. These
Pols feature vectors were then used as input for clustering via the K-
means algorithm, which grouped the sensors into 1,000 clusters. For each
cluster, we selected one representative sensor, resulting in a final set of
1,000 sensors. This approach effectively reduces the dataset to a
manageable size while preserving a diverse representation of the various
spatial and feature characteristics present in the original dataset.

We split the collected data into two parts: data from 2018 was used as
the training set, while data from 2019 was reserved for model validation.
We believe an entire year of data for testing provides a more compre-
hensive assessment of the model's performance across a full spectrum of
temporal variations, including different weather conditions and holiday
periods. All experiments were configured to predict traffic flows for the
next 12 h based on historical 12-h traffic flow data. During the data
preprocessing stage, we filtered out samples with zero values for 24
consecutive hours, which likely resulted from malfunctioning sensors.
Additionally, to assess the model's generalization capability, we created a
zero-shot dataset derived from LargeST (Liu et al., 2024). This dataset
comprises data from 100 sensors (also selected through clustering) in San
Diego (SD), covering the period from November 1, 2019 to December 31,
2019. These data were not utilized in the model fine-tuning process and
served to the evaluation of the model's generalization performance.

2 OpenStreetMap: https://openmaptiles.org.
3 Overpass Turbo: https://overpass-turbo.eu.
4 NOAA: https://www.ncei.noaa.gov.
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4.2. Evaluation metrics

In time series forecasting tasks, researchers commonly employ root
mean square error (RMSE), mean absolute error (MAE), and mean ab-
solute percentage error (MAPE), to evaluate the accuracy of forecasting
results. These metrics are defined as Egs. (4)-(6):

n

_ b )
RMSE = nZ(y, ) 4

i=1

L
MAE = - - 5
n;W i ®)

1 - i — v,
MAPE = - Z‘yTy x 100% 6)
i=1 i

where y; represents the ground truth value of the i-th data point, y; de-
notes the corresponding prediction value, and n stands for the total
number of samples. RMSE is advantageous for emphasizing larger errors
due to its square term, while MAE provides a straightforward interpre-
tation by averaging absolute errors, treating all errors equally. On the
other hand, MAPE measures the average percentage difference between
predictions and ground truths, offering interpretability in terms of rela-
tive accuracy but being sensitive to zero values in the denominator. Re-
searchers typically employ a combination of these metrics to
comprehensively assess model performance.

4.3. Baseline models

We extensively compared our proposed xTP-LLM with 9 advanced
baseline models. Among these, LSTM (Hochreiter, 1997) stands as a
temporal-only deep model based on recurrent neural networks (RNNs),
disregarding spatial correlations. Additionally, we select DCRNN (Li
et al.,, 2017) and AGCRN (Bai et al., 2020) as the representation of
RNNs-based methods. We also choose TCN-based methods such as
STGCN (Yu et al., 2018) and GWNET (Wu et al., 2019), along with
attention-based methods ASTGCN (Guo et al., 2019) and STTN (Xu et al.,
2020). These models were proposed between 2018 and 2020, reflecting
the prevalent research direction in time series forecasting during those
years. Furthermore, we integrated three representative methods from
recent years, including STGODE (Fang et al., 2021) and DSTAGNN (Lan
et al,, 2022). STGODE adeptly utilizes neural ordinary differential
equations to capture the continuous changes of traffic signals, while

Table 1
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DSTAGNN is specifically designed to capture the dynamic correlations
among traffic sensors.

4.4. Experiment settings

Our model is fine-tuned based on the well-known open-source LLM,
Llama2 (Touvron et al., 2023), specifically utilizing the chat version with
a size of 7 B. We load the base model in 8 bits for fine-tuning, with
training parameters including a batch size of 8, a learning rate of 5e-4, a
warm-up step of 400, gradient accumulation steps of 8, and a training
epoch for 2. The LoRA parameters are configured with a rank of 16 and
an alpha value of 32. During the inference phase, a temperature of 0.95
was applied.

4.5. Overall performance

We report the performance comparison results between xTP-LLM and
the baseline models in Table 1. All models are trained and evaluated
based on our CATraffic dataset, with the same dataset settings. The task is
to utilize traffic flow data from the historical 12 h to forecast future traffic
flows in the next 12 h. We represent the results of horizons 3, 6,9, and 12,
as well as the average performance over all 12 steps in the table. The
results demonstrate that the overall performance of our proposed xTP-
LLM exceeds that of the baseline models by a large margin, especially
in the MAE and MAPE. For example, In terms of average performance of
all 12 horizons, our model outperforms the best two baseline models,
GWNET (Wu et al., 2019) by 18.37% in MAE, and STGCN (Yu et al.,
2018) by 34.00% in MAPE, which shows the impressive capability in
traffic flow forecasting of our model.

We further demonstrate the results with different prediction horizons
of the baseline models and xTP-LLM, depicted in Fig. 6. From left to right,
RMSE, MAE, and MAPE of compared models at different prediction steps
are shown. The results yielded the following observations (Figs. 3-5).

e As the prediction horizon increases, performance generally declines
across all models, as longer-term forecasts inherently entail greater
uncertainty and complexity. However, several models exhibit
improved performance in longer-term forecasting, such as LSTM,
ASTGCN, and DCRNN. This phenomenon may be attributed to these
models' ability to capture and leverage the periodicity within the
data, allowing them to make more accurate predictions over extended
time horizons.

e Our proposed model consistently outperforms the comparison
methods at each time step, showing significant advantages in both

Performance comparison between our proposed xTP-LLM and baseline models on our CATraffic dataset. The horizon for traffic flow prediction is 12, and we show the
results in Steps 3, 6, 9, and 12. The last three rows are the average performance for all 12 steps. We highlight the best results in bold and the second best in underline.

Step Metrics LSTM DCRNN STGCN ASTGCN GWNET AGCRN STTN STGODE DSTAGNN XTP-LLM
RMSE 62.65 61.12 43.43 66.60 42.59 43.92 43.41 52.30 51.79 40.34
3 MAE 40.00 37.32 25.83 44.47 25.56 25.67 26.00 29.53 34.06 20.20
MAPE (%) 24.75 24.52 16.09 28.36 15.96 15.60 16.22 19.69 23.90 9.94
RMSE 74.69 74.21 46.64 75.07 45.91 48.92 51.63 55.79 53.44 44.53
6 MAE 48.10 45.83 27.94 49.47 28.27 28.94 30.79 32.97 33.72 22.70
MAPE (%) 33.98 31.58 15.75 31.10 18.00 17.31 18.99 21.62 21.27 11.39
RMSE 77.61 78.22 50.04 81.76 46.61 52.06 56.19 59.97 56.21 45.89
9 MAE 49.60 47.97 30.16 53.43 28.70 30.74 33.11 35.23 36.45 23.89
MAPE (%) 39.26 32.22 17.52 35.35 19.88 18.38 20.69 22.44 24.00 12.09
RMSE 69.86 71.79 54.91 69.75 49.79 56.13 61.38 60.47 60.33 47.82
12 MAE 42.05 43.08 33.20 43.40 30.47 32.70 38.27 36.22 37.91 24.99
MAPE (%) 25.99 25.05 19.27 28.03 20.46 19.50 26.09 23.16 24.23 12.30
RMSE 68.14 67.89 46.69 70.48 43.97 47.97 50.03 54.41 52.82 42.81
Avg. MAE 43.23 41.45 28.02 46.17 26.84 28.22 30.04 31.95 34.02 21.91
MAPE (%) 30.21 27.14 16.68 29.99 17.44 16.94 19.04 20.72 22.45 11.01
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2| System Prompts
(2 ]

@ Task Description —————————————

& Domain Knowledge — >

Traffic flow definition
Traffic pattern features

ST correlation examples

\

N

Task Description:

You are an expert traffic volume prediction model, that can
predict the future volume values according to spatial temporal
information...

Domain Knowledge:
+ [Traffic volume]: The number of vehicles passing...

« [Traffic pattern characteristic]: Traffic flow patterns ina

city are influenced by various area attributes...

+ [Spatial temporal factors correlation]: Traffic flow in an
area will be affected by its nearby infrastructures, during
specific periods for different areas... For example,

- Residential areas - more activities during morning and
evening rush hours.

+ Commercial areas - busy during lunch hours and after-
work periods.

» Educational locations - high volume during peak hours
near schools.

- )

Fig. 3. System prompts. They encompass task descriptions of traffic flow prediction and domain knowledge, including definitions, traffic pattern features, and ex-
amples of regional characteristics and traffic-pattern correlations. Equipped with these foundational settings and backgrounds, language models can tailor their

knowledge and capabilities to the specific domain.

Multi-modal Spatial-Temporal Data

© spatial Attribute ? @ Time period ?

| l

( Traffic pattern ? J +[ Special time slot ? ]

|~ Historical trend 2 -

!

¥ Spatial-temporal relation

2€ Chain of Thoughts

=

What is the attribute of this area?

What is the predicted time slot, whether located in
special periods (like rush hours..) ?
- p-

-

What are the traffic patterns of this area ?

\_ W,

How do they vary across different time slots ?

What is the historical temporal trend according to

temporal series information ?

Fig. 4. Chain of thoughts. Chain of thought (CoT) prompts encourage LLMs to extract relevant factors from provided information, prompting deeper consideration of
their potential causal relationships with related knowledge. This process facilitates a comprehensive analysis and interpretation of the data.

short-term and long-term traffic flow forecasting. This indicates the
robustness of our model in various prediction horizons.

Our proposed model shows a more significant advantage in MAE and
MAPE than RMSE, which may be attributed to the amplification effect
of RMSE on outliers, leading to inaccurate assessments. Compared to
RMSE, MAE and MAPE are less sensitive to extreme errors because
they measure the mean absolute error and the percentage error,
respectively. The excellent performance of our model on MAE and
MAPE suggests that it is effective in mitigating the effects of outliers
and provides more accurate and stable predictions, especially in cases
where extreme values may occasionally occur.

These findings underscore the effectiveness of our method in
capturing complex temporal patterns in traffic flow data, leading to more
accurate and reliable predictions.

4.6. Spatial and temporal homogeneity

Evaluating spatial and temporal homogeneity in traffic prediction is
vital for evaluating model performance, generalizability, and robustness.
It ensures that traffic flow prediction models can effectively adapt to
diverse real-world conditions. Therefore, in this section, we will thor-
oughly analyze the performance of our proposed model in terms of
spatio-temporal consistency.

Spatial homogeneity helps to assess the ability of different models to
learn traffic patterns at different spatial locations. To evaluate this kind of
capability, we tested our XTP-LLM as well as four baseline models (LSTM,
AGCRN, STGCN, and GWNET) at different locations with varying urban
characteristics in the Greater Los Angeles Area (GLA). The result,
depicted in Fig. 7a, illustrates MAPE values for four prediction horizons
of 3, 6, 9, and 12 h, with darker colors indicating poorer performance.
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Region information:

Transportation, residential

Spatial-temporal modalities areas...

Traffic volume data in the
past 12 hours were 19, 44,
98,150 ...

Spatial Attributes

Historical series

3 PM, 2018-12-25, Monday

Date Holiday

Wil Holiday: Christmas

Weather: Sunny,
temperature is 6.0 °C...

Fig. 5. Multi-modal spatial-temporal (ST) text prompts. Spatial-temporal data co
aspect of a region, nearby Pols within a defined range are utilized to characteri:
Freeway, surrounded by residential complexes and an airport, as the blue symbo.
residential and transportation zones, reflecting the area's geographical attributes
textually as the rest components.
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Spatial Attributes

Residential,
Transportation areas

U

Nearby PoIs

Apartments,
Airport,
Bus stations...

PoI Categories

ﬁ School . Court
w Shops m Apartment

z Airport

vers spatial attributes and time series of historical traffic flow. To consider the spatial
ze its location features. For instance, consider a sensor positioned along the Century
1 illustrated in the right part of the figure. This location can be classified as a blend of
. To incorporate historical flow data and external factors, we represent these datasets

GWNET
AGCRN

STTN
STGODE

DSTAGNN
—&— XTP-LLM

—#- LSTM
DCRNN

—A— STGCN
ASTGCN

40

MAPE (%) on CATraffic dataset
[ N N w w
w 2 o w

=
o

1 2 3 4 5 6 7 8 9 10 11 12 1

Horizon (h)

2 3 4 5 6 7 8 9 10 11 12

2 3 45 6 7 8 9 10 11 12
Horizon (h)

1
Horizon (h)

Fig. 6. Time step-based prediction comparison with baseline models and our xTP-LLM. All experiments are conducted based on our CATraffic dataset. Results show
that the performance of all models decreases with increasing prediction time, whereas our model significantly outperforms the others in all prediction steps.

Overall, our xTP-LLM model exhibits relatively consistent prediction
performance across different locations, effectively capturing traffic flow
trends irrespective of varied spatial characteristics. In contrast, other
models demonstrate inferior homogeneity, particularly in areas featuring
complex road network intersections and intricate facility distributions.
These findings underscore the robustness and adaptability of our pro-
posed xTP-LLM model in effectively learning and predicting traffic pat-
terns across diverse spatial contexts, thus highlighting its potential for
real-world application in urban traffic management and planning
scenarios.

In the analysis of temporal homogeneity, we evaluated models on a
subset of the test dataset (traffic data in November 2019) and reported
the daily averaged MAPE values. Illustrated in Fig. 7b as calendar heat
maps, the results showcase the comparative performance across the
month. Our model consistently exhibits lower daily average MAPE,
demonstrating robustness in capturing temporal nuances of traffic flow
patterns. Notably, it consistently outperforms others throughout the
whole month, emphasizing its superior capability in handling diverse
temporal dynamics inherent in real-world traffic scenarios.

4.7. Ablation studies

4.7.1. Impact of input components on model performance

To assess the effect of varying prompt input on model performance,
we conducted a thorough ablation analysis. This approach enabled us to
systematically evaluate the contribution of each component to the overall
performance of the model. Specifically, we investigated the effects of
including date, weather, Pols information, domain knowledge, and CoT
prompting on model performance, and the results presented in Table 2.
We observed that date, weather, and points of interest (Pols) each
independently enhance model performance, as evidenced by compari-
sons between input settings B, C, D, and A. Notably, date information
yields the most significant improvement, with a 37.62% reduction in
MAE, underscoring its critical role in enhancing predictive accuracy.
Weather and Pols also contribute positively, with MAE reductions of
4.53% and 14.58%, respectively, though their impact is less pronounced
compared to date information. Moreover, The interaction between date,
weather, and Pols significantly enhances model performance, as
demonstrated by input settings E, F, and G. Any combination of these



X. Guo et al.

3h 6h 9h 12 h 80
=
0
- L] L] L] L] 0
- - - =
60
4
4
Q
2 1
X 50
3 "
3 a
& E;
30
m
s
o I A k20
E F10
=
&
x

(a) Spatial MAPE map

3h 6h 9h 12 h 30
=
7
- 25
- [ 1 |
- - - r
20
I s | . [ el
- r n | E
15
N W T T
w
:
[ [ [ [
10
N T e T
g
X r - - r
D
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Fig. 7. Comparison of the spatial and temporal prediction error distributions
among different models: (a) presents the distribution of MAPE for our proposed
xTP-LLM and four baseline models in various locations across the Greater Los
Angeles (GLA), considering four different prediction horizons; (b) illustrates the
distribution of daily average MAPE over the whole November in 2019, with four
different prediction horizons.

three components can further improve the model's predictive perfor-
mance, illustrating their synergistic effect. For example, setting F results
in an MAE of 24.31, shows a 21.25% improvement compared to setting B,
which shows the synergistic effect of date and Pols on model perfor-
mance. Similarly, the including weather and Pols (setting G) shows a
14.41% improvement in MAE compared to setting C. These results un-
derscore how the integration of date, weather, and Pols interactively
boosts model performance, with each component amplifying the benefits
provided by the others.
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Additionally, an interesting observation emerges when comparing
input settings H, I, J, and K. We found that adding domain knowledge or
CoT prompting alone did not significantly improve model performance
and sometimes even degraded it (as seen in settings [ and J compared to
H). However, when both were combined (setting K), significant perfor-
mance improvements were observed, with a 4.57% reduction in MAE.
This finding contrasts with our initial expectations and suggests that
domain knowledge and CoT prompting work synergistically. We attri-
bute this to CoT prompting effectively guiding the model in utilizing
domain knowledge, extracting relevant information for the prediction
task. Conversely, CoT prompting also benefits from the inclusion of
domain knowledge, enabling it to achieve its full potential.

4.7.2. Impact of different horizons on model performance

To explore the impact of different horizons on model performance, we
conducted additional experiments with historical horizons of 4 and 8 h.
The evaluation results in the test dataset are presented in Fig. 8. We
observed that as the historical horizon decreases, the model's prediction
error, measured by MAE, increases significantly. Specifically, the 12-h
horizon consistently yielded the lowest MAE values, indicating superior
performance compared to shorter horizons. In contrast, the 4-h horizon
exhibited the highest MAE, suggesting that a shorter historical horizon
substantially impairs the model's ability to accurately predict traffic flow.
This is because a longer historical horizon provides more information,
allowing the model to more accurately identify traffic flow patterns.
Moreover, examining different prediction steps provides a direct view of
how varying prediction horizons impact the model's predictions. As ex-
pected, the performance deteriorates as the prediction horizon increases
in all three historical horizons. Two primary factors contribute to this
phenomenon. Firstly, the increasing temporal distance introduces greater
uncertainty and variability into the forecasting process, thereby exacer-
bating the challenge of accurately predicting future events. Secondly, the
iterative nature of large language model (function as a next-token pre-
dictor) means that any error in early prediction is propagated and
magnified in subsequent steps, leading to a cumulative effect that
significantly impairs the model's overall performance on the long range.

4.8. Generalization studies

4.8.1. Robustness analysis on the test dataset

To ensure the robustness of our XTP-LLM model, we conducted a
comprehensive analysis of its performance on the test dataset, focusing
on various time periods such as peak hours, off-peak hours, weekdays,
weekends, and different weather scenarios. The results, detailed in Ta-
bles 3 and 4, demonstrate the model's resilience and consistency across
these diverse scenarios.

Table 3 illustrates the model's performance across different time pe-
riods, including peak hours, off-peak hours, weekdays, and weekends.
The average MAE values range from 21.25 to 22.57, indicating that the
model maintains a stable level of accuracy regardless of temporal vari-
ations. This consistency underscores the robustness of the xTP-LLM
model in handling different time-related scenarios. Table 4 presents the
model's performance under various weather conditions, such as sunny,
rainy, foggy, and stormy situations. Despite the imbalanced representa-
tion in the dataset, where sunny conditions dominate and extreme
weather like sleet and snow are underrepresented, the model delivers
reliable predictions. The MAE values remain relatively stable across all
weather conditions, demonstrating the model's robustness even in less
frequent and challenging scenarios. Notably, Table 4 also shows that
even when certain weather conditions, such as storm and snow, are ab-
sent from the training dataset, the model still achieves good results on the
corresponding test data. This highlights the strong generalization ability
of the xXTP-LLM model.

4.8.2. Zero-shot testing analysis
LLMs are well known for their excellent zero-shot capabilities. In this
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Table 2
Ablation study results showing the impact of different input settings (date, weather, Pols, domain knowledge, and CoT prompting) on model performance.
Input setting Date Weather Pols Domain knowledge CoT prompting RMSE MAE MAPE (%)
A 89.17 49.49 30.08
B v 56.43 30.87 17.05
C v 82.43 47.25 28.52
D v 75.14 42.28 26.39
E v v 51.51 28.35 14.98
F v v 48.50 24.31 12.88
G v v 69.97 40.44 24.90
H v v v 46.20 22.36 12.05
I v v v v 44.22 22.64 11.23
J v v v v 45.49 23.55 12.38
K v v v v v 42.81 21.91 11.01
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Fig. 8. Model performances with different history horizons. We show that as the history horizon shortens, the MAE increases significantly, indicating that the model

performs better with longer historical data.

Table 3
Model's performance across different time periods, including peak and off-peak
hours, weekdays, and weekends.

Different Peak hours (7 Off-peak hours (10 Weekday ~ Weekend
period am.-9 a.m., a.m.-3 p.m.,

4 p.m.—6 p.m.) 7 p.m.-7 a.m.)
Avg. MAE 21.25 22.57 22.05 21.56

section, we delve into the generalization of our proposed xTP-LLM and
compare it with other LLMs. We conducted zero-shot experiments using
two datasets: the first is our proposed CATraffic-based zero-shot dataset,
and the other is the taxiBJ dataset (Zhang et al., 2017). The TaxiBJ
dataset comprises taxicab GPS data and meteorology data in Beijing from
four time intervals within 2013-2016, focusing on the inflow/outflow
prediction task, which is different from the traffic volume prediction task
in CATraffic. To ensure a fair comparison, we reorganized the taxiBJ
dataset into the same format as our CATraffic dataset. The overall results

are presented in Table 5, which indicate that our proposed model ex-
hibits superior performance across all three tasks compared to the orig-
inal Llama2 series models, as well as GPT-3.5-turbo and GPT-4. For the
CATraffic zero-shot dataset, our xXTP-LLM model exhibits notable im-
provements over the best-performing comparative model (GPT-4) by
61.53%, 71.22%, and 85.11% in RMSE, MAE, and MAPE, respectively.
On the TaxiBJ dataset, our model achieves substantial performance en-
hancements in both inflow and outflow tasks. Compared to GPT-4,
xTP-LLM shows improvements of 40.32% in RMSE, 44.01% in MAE
and 80.75% in MAPE in inflow prediction task, and improvements of
44.89% in RMSE, 47.97% in MAE and 77.26% in MAPE in outflow
prediction task. These results demonstrate superior zero-shot learning
capability of our xTP-LLM on the cross-domain datasets, even with a
smaller scale of parameters (7 billion for xTP-LLM, compared to 70
billion for Llama2-70B-chat, 173 billion for GPT-3.5, and approximately
1.76 trillion for GPT-4). While LLMs like GPT-4 and Llama2-70B-chat
exhibit strong generalization capabilities in general domains such as
conversation and translation, they generally do not perform well in the

Table 4

Distribution of various weather conditions in the training and test datasets, as well as the model's performance across these different weather conditions.
Weather Sunny Rain Foggy Thunderstorm Sleet Storm Snow
Percentage on training dataset 83.300% 11.600% 4.700% 0.430% 0.016% 0.000% 0.000%
Percentage on test dataset 76.400% 19.800% 3.000% 0.740% 0.000% 0.028% 0.011%
Avg. MAE 21.88 21.42 20.05 22.11 — 20.17 19.93
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Zero-shot performance comparison of our proposed xTP-LLM with other LLMs without fine-tuning. We conducted tests on both the CATraffic zero-shot dataset and the
TaxiBJ dataset to compare the zero-shot capabilities of different models. The results show that our model outperforms other LLMs significantly on both unseen datasets.

Model CATraffic zero-shot TaxiBJ (inflow) TaxiBJ (outflow)
RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)
Llama2-7B-chat 273.02 226.64 126.00 255.00 151.57 172.60 218.44 135.39 151.96
Llama2-13B-chat 234.73 187.37 146.08 230.55 129.39 184.90 234.14 144.24 143.47
Llama2-70B-chat 222.02 168.04 122.72 205.67 123.46 136.83 209.05 125.39 139.89
GPT-3.5-turbo 168.93 135.34 74.49 150.71 95.08 196.00 150.91 94.77 195.31
GPT-4 121.02 103.32 61.85 91.86 57.05 165.40 99.05 59.50 137.21
xTP-LLM 46.56 29.73 9.21 54.82 31.94 31.84 54.59 30.96 31.20
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Fig. 9. Visualization of traffic flow prediction results on CATraffic zero-shot dataset. We randomly select test samples of three sensors with four time periods and
visualized the prediction results of our proposed xTP-LLM, Llama2-chat models with three different sizes, GPT-3.5-turbo and GPT-4. The results show that our fine-

tuned model performs significantly better than other LLMs.

traffic prediction domain when applied in a zero-shot learning setting.

We also provide visualization results in Fig. 9, showing 12 test sam-
ples from three different sensors in four different time periods. The re-
sults highlight that our model not only captures the traffic trends of new
scenarios effectively but also delivers accurate prediction values. In
contrast, Llama2 series of LLMs struggle to capture the dynamic pattern
of traffic flow; while GPT-3.5-turbo and GPT-4 demonstrate the ability to
describe some general trends in traffic, they perform inadequately in
capturing nuances of variation, hindering their ability to provide accu-
rate predictions. We attribute these discrepancies to our systematic
prompt design and effective model fine-tuning. Prompt inputs effectively
describe the task context and align information from different modalities
into a unified representation, while fine-tuning infuses crucial expert
knowledge into the model, thereby substantially enhancing its perfor-
mance in traffic prediction. Our experiments further validate that in-
struction fine-tuning allows smaller models to excel in specific domains,
often outperforming larger models.
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4.9. Case studies for explainable predictions

4.9.1. Result-explainable studies

To illustrate the reliability and accountability of our model's pre-
dictions, we report four cases with different prediction time slots and
external factors in Table 6. In each example, the ground truths and pre-
dictions are displayed in the figure on the left (light red areas indicate the
95% confidence interval), with the corresponding explanatory texts on
the right. The original result explanations are too long, so we used
chatGPT to summarise them into a brief paragraph for presentation
purposes. A complete output can be found in Table B1 in Appendix B
(corresponding to Example (d) in Table 6).

Our proposed xTP-LLM consistently delivers accurate traffic flow
predictions across various time periods, including weekdays, weekends,
and holidays like Christmas. Notably, our model not only provides pre-
cise forecasts but also offers insightful explanations, considering a wide
range of external factors. For instance, in Example (a) in Table 6, our



X. Guo et al.

Table 6
Explanation examples. Light red shows the 95% confidence interval, and yellow
highlights traffic trends.

Prediction Explanation
3001 = i (a): Traffic volume is expected to
—— Ground truth ! be low before dawn, then it is
2501 i expected to increase gradually
E 2004 i throughout the day. Since today is
] | Wednesday, weekday patterns
3 1504 E suggest higher traffic during rush
S E hours and lower traffic during
E 1001 i non-peak times.Nearby
504 i transportation areas and
! commercial districts will
4 ! contribute to an increase in traffic
1416 18:20 2_?_. g 2 & 681012 volume during certain periods.
ime of a day
Sunny weather can also contribute
to increased traffic.
450 i (b): Traffic volume is expected to
—— XTP-LLM | N .
400 = Ground truth ! increase and then decrease in the
4504 i next 12 h. Sunny weather with a
g ! comfortable temperature will
'§ 300 i attract more day travelers. The
£ 250 i onset of Sunday afternoon rush
E 2004 i hour will further contribute to
g 150 i increased traffic. With no known
H holidays or events, historical data
100 E suggest that traffic volume will
50 1 resemble previous Sundays, with a
g 248 gr. 20 1e 911820 22 slight increase during the
ime of a day
afternoon rush hour followed by a
gradual decline at night.
250 — xPm ! (c): Tra.fﬁc Volufne is exl?ected to
—— Ground truth steady increase in the rainy
300+ morning and then decrease in the
§ 250 afternoon. Activities at the
K morning rush hour in residential
§ 2004 and commercial areas are likely to
_;:Q 1504 contribute to the initial rise. The
£ rain might cause congestion,
100 leading to a peak in volumes
50 around midday. As the day
progresses, the volume is expected
20220 2 l:rimi ofsa dl:y 12.1¢ 16 18 to gradually decrease as people
return home.
300+ L P (d): Traffic volume is expected to
—— Ground truth decrease significantly over the
2501 next 12 h considering a rainy
g 200 Christmas Day. As it is a holiday,
S commuter and commercial
£ 150 activities are minimal, leading to
S reduced traffic. Additionally, the
E 1007 rainy weather may further deter
504 people from traveling or driving,
! contributing to the decline in
01 i traffic volumes. The focus on

6 8 10 12 14 16 182022 0 2 4

Time of a day indoor celebrations and festivities

is likely to keep the roads quiet at
night.

model predicts an initial increase followed by a decrease in traffic flow,
aligning with typical weekday patterns. Moreover, in Example (c) in
Table 6, our model identifies rainy weather as an impact factor for traffic
congestion, leading to a delayed peak traffic flow. Furthermore, Example
(d) in Table 6 highlights our model's ability to factor in holiday impacts
on traffic flow.

While our xTP-LLM excels in leveraging diverse external data for
robust predictions, it faces challenges in capturing nuanced flow fluctu-
ations, such as those occurring between 14 and 18 h in Example (b) and
20-22 h in Example (d) in Table 6. These complexities may stem from the

12
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Table 7
Examples of what-if analysis.

Prediction Explanation

Sudden accident: ... Important! A
serious traffic accident occurred on

600 Ground truth
—+— Normal preciction
—a Accident prediction

500

Explanation: ... The traffic
volume in the next 12h will
increase due to the post-accident
recovery. The accident had a
significant impact on traffic flow
causing delays and changes in
traffic patterns. After the accident,
the number of cars decreased but
still remained at a relatively high
level.

Traffic flow volume.

A accident occured!

S 676 01011121314151617181920212223 0 1 2 3 4
Time of a day

Sudden weather event: ...
Important! A severe sandstorm

600 { = Ground truth
—e— Normal prediction
—+— Sandstorm prediction

500

Explanation: ... The sandstorm
causes a sharp drop in traffic after 9
a.m., with volumes significantly
lower than normal due to
hazardous conditions, recovering
slightly in the afternoon as the
storm eases ...

Traffic flow volume.

A sandstorm broke out!

h
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
i
i

1617181920212223 0 1 2 3 4 5 6 7 6 9101112131415
Time of a day

dynamic nature of human activities and the intricacies of transportation
systems. Nevertheless, although not good at capturing the full details of
the traffic flow changes, our xXTP-LLM provides textual rationales for its
forecasts, which shows a high transparency and interpretability.

4.9.2. What-if analysis

To investigate the generalization and conditional reasoning abilities
of the framework, this section examines how prediction results change
when influenced by external factors, such as traffic accidents and
inclement weather. For the situational analysis, we consider two hypo-
thetical scenarios: Case 1 involves a nearby traffic accident occurring at
10 p.m., and Case 2 involves a severe sandstorm breaking out at 9 a.m.
These conditional descriptions are incorporated into the input prompt,
while the other sections of the prompt remain consistent with the original
prediction tasks. We then compare the normal predictions, what-if pre-
dictions, and the ground truth, as shown in Table 7.

The traffic system is highly dynamic and complex, interacting with
human factors and real-time external conditions. From the experimental
results, we observe that when a traffic accident occurs at a specific
moment, the nearby traffic volume decreases due to the congestion
caused by the accident, dropping from 530 to 430. The model can
interact with real-time incidents, avoiding prediction delays and incor-
rect analysis. Similarly, when severe weather events like a sandstorm
occur, the reduced visibility and road passability lead to a sharp decline
in the number of vehicles passing through the area, from 532 to 352.
However, over time, traffic flow gradually recovers to normal levels in
the region. This indicates that our model provides timely feedback to
sudden weather changes, and its inherent reasoning and analytical ca-
pabilities help make more reasonable predictions.

5. Conclusions and future work

In conclusion, our research introduces xTP-LLM, a novel traffic pre-
diction model designed for both accuracy and interpretability. By
incorporating multi-modal inputs and employing language-based repre-
sentations, xTP-LLM achieves competitive performance compared to
state-of-the-art models while offering insightful explanations into its
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predictions. xXTP-LLM's language-based framework, coupled with spatial-
temporal alignment instructions, provides a transparent and adaptable
approach suitable for various urban prediction tasks. In general, our work
contributes to the advancement of effective and reliable traffic prediction
methods, essential for informed decision-making in urban transportation
planning and management.

In the future, we aim to delve into methods that enable LLMs to
harness spatial information more effectively and to grasp how different
sensors are related spatially. This will help models to make better pre-
dictions by considering data from nearby sensors. Moreover, further
external factors can be considered, such as traffic accidents, human ac-
tivities, and big events, contributing to more accurate predictions.
Additionally, exploring the development of LLM systems tailored for
urban brains is also a very interesting but challenging topic. This entails
integrating city-level data into LLMs to tackle various downstream tasks
like urban planning, traffic management, and pollution control, etc.
Achieving these involves the challenge of enabling LLMs to efficiently
utilize city-level multi-modal data, alongside the need for substantial
computational resources and exceptional engineering capabilities.
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The prompt for xXTP-LLM in traffic flow prediction is carefully designed, as shown in Table A1. The complete prompt contains both a system prompt
and a user input prompt. The system prompt sets the role of the LLM, and it also contains a context knowledge part that provides additional background
information in traffic flow prediction, as well as the CoT prompt that guides LLMs through the human reasoning process. The system prompt remains the
same throughout the dataset, and the change parts are the user input prompt as well as the corresponding ground truth.
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Table Al
Details of our designed prompt in xTP-LLM for traffic flow prediction task, including system prompt, input prompt, as well as the ground truth.

System prompt:

You are an expert traffic volume prediction model, that can predict the future volume values

according to spatial temporal information. We want you to perform the traffic volume

prediction task, considering the nearby environment and historical traffic volume data.

Context knowledge:

Context knowledge you could consider:

e  Traffic volume: the number of vehicles passing a specific region in an hour.

e  Traffic pattern characteristic: Traftic flow patterns in a city are influenced by various area
attributes. Also, traffic volume has a periodic daily and weekly pattern.

e  Spatial-temporal factors correlation: Traffic flow in an area will be affected by its nearby
infrastructures, during specific periods for different areas. You should think about how the
volume will change in a specific area, during a specific time. For example,

- Airports, and train stations - increased volume on weekends and holidays.
- Residential areas - more activities during morning and evening rush hours.
- Commercial areas - busy during lunch hours and after-work periods.

- Educational locations - high volume during peak hours near schools.

Chain of thought:

Think carefully about the following questions about how spatial-temporal factors affect traffic

flow.

e  What is the attribute of this area and what is the predicted time zone located in special
periods (like rush hours, weekdays, weekends, and holidays)?

What are the traffic patterns of this area, and what is the change in different time slots?

e  What is the historical temporal trend according to temporal information, considering the

weekdays, around holidays?

Input prompt:

Some important information is listed as follows:

e  Location: District 3 in Yolo, California, USA, along the US50-E freeway, lane 4, direction
of eastbound.
Today’s weather: Sunny. The temperature is 6.0 °C and the visibility is 10.0 miles.

e  Region information: including transportation areas, commercial areas, and educational
areas within a range of 5 km.

e  Current time: 3 p.m., 2018-2-19, Monday, Washington’s Birthday.

e  Traffic volume data in the past 12 h were 19, 44, 98, 150, 156, 178, 208, 246, 248, 257,
263 and 269, respectively.

According to the above information and careful reasoning, please predict traffic volumes in the

next 12 h (from 4 p.m. to 3 a.m.). Format the final answer in a single line as a JSON dictionary

like: Traffic volume data in the next 12 h: [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11,

V12].

Ground truth:

Traffic volume data in the next 12 h: [262, 229, 221, 214, 152, 127, 100, 58, 38, 25, 22, 18].

14
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Appendix B
Explanatory example

A complete example of interpretative output is given in Table B1. This example shows the traffic flow prediction in the next 12 h at 5 p.m. on
Christmas Day 2019. By adding explanatory demand instructions to the original prompt (bold text in Input Prompt of Table B1), xTP-LLM can output
both the prediction results as well as the explanatory text. It can be found that our model is capable of adjusting the traffic flow prediction strategy by
taking into account holidays and the impact of weather on human activities, which shows that our model is highly reliable and accountable.

Table B1
Example of the complete response with explanatory output of our proposed xTP-LLM. This example corresponds to the Example (d) in Table 6.

System prompt: (This part is the same as that in Table A1) ...

Input prompt:

Some important information is listed as follows:

e District 3 in Yolo, California, USA, along the US50-W freeway, lane 3, direction of
westbound.

e  Today’s weather: Rain. The temperature is 8.1 °C and the visibility is 9.7 miles.

e  Region information: including transportation areas, commercial areas and educational areas
within a range of 5 km.

e  Current time: 5 p.m., 2019-12-25, Wednesday, Christmas Day.
Traffic volume data in the past 12 h were 119, 161, 218, 244, 260, 277, 276, 275, 282, 288,
274 and 240, respectively.

According to the above information and careful reasoning, please predict traffic volumes in the

next 12 h (from 2 a.m. to 1 p.m.) and explain it. Format the final answer in a single line as a

JSON dictionary like: {Traffic volume data in the next 12 h: [V1, V2, V3, V4, V5, V6, V7, V8,

V9, V10, V11, V12], Explanation: xxx}. Please think step by step.

xTP-LLM’s response:

{"Traffic volume data in the next 12 h": [214, 183, 158, 157, 119, 69, 47, 36, 31, 26, 27, 33],

"Explanation": I will provide a step-by-step explanation for predicting traffic volumes in the next

12 h based on the given information.

1. Time and Date: It is 5 p.m. on a Wednesday, December 25, 2019, which is Christmas Day, with

rainy weather and good visibility.

2. Historical Traffic Volume: In the past 12 h, the traffic volumes were: [119, 161, 218, 244, 260,

277,276, 275,282, 288, 274, 240].

3. Current Situation: Given the holiday, Christmas Day, and the rainy weather, traffic patterns

may differ from regular weekdays.

4. Christmas Day Factor: On holidays, traffic volume might be lower due to decreased commuter

and commercial activities. People may stay indoors for celebrations.

5. Rain Impact: The rain could further reduce traffic volume as people may prefer to avoid driving

in adverse weather conditions.

6. Traffic Trend Prediction:

- The evening hours (6 p.m. to 9 p.m.): Traffic volume is likely to be significantly lower than
usual as people prioritize holiday celebrations.

- Late-night hours (10 p.m. to 5 a.m.): Traffic volume may remain low throughout the night. }

ChatGPT’s summary:

Considering the current time at 5 p.m. on a rainy Christmas Day, traffic volume is expected to
decrease significantly over the next 12 h. As it is a holiday, commuter and commercial activities
are minimal, leading to reduced traffic. Additionally, the rainy weather may further deter people
from traveling or driving, contributing to the decline in traffic volumes. The focus on indoor
celebrations and festivities is likely to keep the roads quiet throughout the night.
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